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INTRODUCTION

The binary oxide of niobium, Nb2O5 , has been reported to have an optical

band gap of 3.4 eV (1). This would suggest that such a material, when used

as an n-type photoanode for the photoassisted decomposition of water, would

be limited in its absorptivity to the ultra-violet region of the spectrum

(X<400nn). In Sr 2Nb 207 , where NbO6 octahedra are the photoactive centers, the

material shows a band gap of 3.86 eV without any significant absorption of the

visible radiation (2). However, it has been sho.n that the association of

Fe203, band gap 2.2 eV (3), with Nb205 in FeNbO 4 results in enhancement of

quantum efficiency, as well as extension of aLborption to longer wavelengths (4).

It has also been reported recently (5) that Cr3 + doped TiO 2 shows photocurrents

resulting from low-energy electronic excitations, which would indicate a

lowering of the optical band gap. Such an observation, along with the low

band gap of CrO, 1.4 eV (6), would suggest the use of chromium as a possible

dopant in order to produce more efficient photoanodes.

It was indicated in an earlier publication (4) that FeNbO 4 can form a solid

solution with e:CNh,, which would give rise to a conducting oxide. Such a

compound, where the different valencies of the transition metal ion are located

at identical lattice sites, should also show interesting magnetic properties

resulting from interaction of 3d electrons. In this study, the effect of the

substitution of chromium for iron on the electronic and magnetic properties of

FeNbO. wii 1 fie reported.
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EXPERIMENTAL

Synthesis

All materials were prepared from the solid state reaction between

Fe203 (Johnson-Matthey, spec pure), Nb205 (Kawecki Berylco Industries,

spectroscopic grade), and Cr203 which was obtained by the careful thermal

decomposition of ammonium dichromate (Allied Chemical Co.). Iron niobate,

as well as the chromium substituted samples, was prepared by placing a

finely ground mixture of appropriate amounts of the starting materials in

a platinum crucible and heating in air at 1150 'C for 48 hours. Each

sample was x-rayed and then reheated. After a third heating, the product

was cooled to room temperature in the furnace and re-examined by x-ray

analysis. This was done in order to confirm the formation of a single

phase. A Philips Norelco diffractometer, with CuKa radiation (1.5405A)

at a scan rate of 0.250 20/min, was used.

Discs were formed by pressing aliquots of approximately 150mg at 90,000

p.s.i.; five drops of Carbowax were added to the powder before pressing in

order to facilitate the formation of a well-sintered disc. The pressed discs

were placed on a bed of powder having the same composition in an alumina

crucible. The discs were heated in a hollow globar furnace at a rate of 850

per hour to 1250 *C and maintained at that temperature for 24 hours. At the

end of the sintering process, the discs were cooled at the same rate.

X-ray diffraction patterns of the sintered discs showed, at the limit

of detection, the presence of the strongest line of a-Fe 2 03, which is consis-

tent with the formation of a solid solution of FeNb206 in FeNbO4 under the

26 4
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sintering conditions. Essentially identical resistivities were measured

before and after abrading these discs to one-half their original thickness,

establishing their homogeneity.

Magnetic Measurements

Magnetic susceptibilities were measured using a Faraday balance (7)

over the range from liquid nitrogen to room temperature at a field strength

of 10.4 kOe. Honda-Owen (field dependency) plots were also made to determine

the presence or absence of ferromagnetic impurities. The data were then

corrected for core diamagnetism (8).

Electrical Measurements

The resistivities of the samples were measured using the Van der Pauw

technique (9). Contacts were made by the ultrasonic soldering of indium

directly onto the samples, and their ohmic behavior was established by

measuring their current-voltage characteristics.

Electrode Preparation

Photoanodes were prepared by evaporating thin films of gold on the backs

of the discs to provide good electrical contact. The gold face of each disc

was attached to the electrode by means of indium solder. Miccrostop

(Michigan Chrome Chemical Corp.) was applied to the gold face and the electrode

wire for insulation. The photoelectrolysis measurements were carried out with

a 150 watt xenon lamp, a monochromator (Oriel Model 7240), a glass cell

with a quartz window, and a current amplifier as described previously (10).
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The electrolyte, 0.2M sodium acetate (pH = 7.8), was purged of dissolved

oxygen by continuous bubbling of 85% argon-15% hydrogen gas.

Structure

FeNbO4 has been reported to crystallize with the monoclinic wolframite

structure (space group P2/C) below 1085 *C. Roth (11) and Laves (12) have

shown that between 1085 °C and 1380 'C, a transition to the orthorhombic

a-PbO 2 structure (space group Pbcn) occurs, followed by a further transfor-

mation to the tetragonal rutile structure (space group P42 /mnm) above 1380*C.

In the rutile form of FeNbO4 , shown in figure l(a), it can be seen

that the octahedra share edges in such a way that straight chains are formed

along the c direction (perpendicular to the plane of the paper). As shown

in figure 1(b), there is a random distribution of Fe and Nb atoms in one

half of the available octahedral sites. Onthe other hand, when FeNbO4

crystallizes with the a-PbO 2 structure, the NIO6 units are joined in such a

way as to form zig-zag chains of octahedra along the c direction (figure 2).

As with the rutile structure, only one half of the octahedral sites are

occupied, and random distribution of Fe and Nb atoms in the zig-zag chains

prevails. The wolframite polymorph (figure 3) is an ordered variant of the

a-PbO, structure in which the Fe and Nb atoms are distributed in such a

fashion that every occupied chain contains either only Fe or only Nb atoms.

The transformation of wolframite to a-PbO2 , which occurs at elevated

temperatures, is therefore considered to be the result of randomization of

Fe and Nb atoms within the structural array.



Thus, for FeNbO 4, the rutile and a-PbO2 are related to the nature of

the chains formed, i.e., straight or zig-zag. In both polymorphs, the Fe

and Nb atoms are arranged in a randqm fashion. Ordering of the atoms has

been observed in the zig-zag chains, and such ordering gives rise to the

formation of the wolframite structure.
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RESULTS

The system Fei xCrxNbO4 forms a solid solution crystallizing with

the wolframite structure over a composition range of O<x<0.1. In the region

0.1<x<0.4, a mixture of the wolframite FeNbO4 and rutile CrNbO4 phases was

obtained. Between 0.4<x<l, the products can be indexed on the basis of the

rutile CrNbO4 structure. The precision lattice parameters are listed in

Table I. The changes in the cell parameters may be attributed to the differ-

ence in the ionic radii of Fe (0.65A) and Cr (0.615A). Table II indicates

the change in the electrical resistivities in going from the wolframite compo-

sitions to those of the rutile. The electrical resistivity is enhanced greatly

as the structure is transformed from wolframite to rutile. The resistivity

varies from 53 ohm-cm for x=O.l (wolframite) to an insulator for x=0.4 (rutile).

Such a difference can be explained in terms of the ordering of iron and niobium

chains in the wolframite structure. As indicated previously (4), FeNbO4 can

form a solid solution with FeNb206. Cation ordering of the zig-zag chains

prevents the NbS + ions from blocking the conduction paths which result from

the co-existence of Fe2 + and Fe3 + ions in the alternate chains (figure 3).

This gives rise to the observed increase in conductivity. For products which

crystallize with the straight-chain rutile structure, there is a lack of

ordering of the FcO 6 and NbO 6 octahedra, and hence, low electrical conductivity

is observed.

The magnetic data for the system Fe1 x CrxNbO 4 is summarized in Table II.

All compositions show Curie-Weiss behavior with effective molar Curie

constants, CM, corresponding to those expected from spin-only moment
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3+ 3+ S+considerations involving primarily Fe , Cr , and Nb . A high spin

state for both Fe3 + and Cr3 +  (IjeffNb 5+=0) is assumed. From Table II,

it can be seen that the value of the paramagnetic Curie temperature, 8, is

negative and decreases in magnitude with increasing chromium substitution.

The decrease in the 8 values given in Table II is attributed to a decrease

in the strength of the antiferromagnetic interactions, caused by the sub-

stitution of d chromium for d iron.

The photoresponse observed for the chromium-doped FeNbO4 is represented

in figure 4, where the photocurrents obtained in the "white" light are

plotted against the anode potential measured with respect to a standard

calomel electrode (SCE). The photoresponse curve for FeNbO4 (4) is included

for comparison. The general shapesof the two curves are quite similar.

Although the onset of photocurrent is not sufficiently abrupt for an exact

comparison of the flat-band potentials, there does not appear to be a

significant shift, and as can be seen, the flat-band potential seems to lie

between 0.1 and O.4V vs SCE for both compounds.

The quantum efficiency 9 (in electrons/photon) of Fe 9 Cr. NbO4 , as

measured at an anode potential of 0.8V vsSCE, is plotted in figure 5. Re-

sults for FeNbO 4 are again included for the purpose of comparison. Although

the shapes of the spectral response curves remain similar, the photoresponse

of the chromium-doped sample extends to longer wavelengths and possesses higher

efficiency in the visible part of the spectrum. This increase in efficiency

is sufficient to nearly double the total photoresponse to AN1l (air mass 1) solar

irradiation, as can be seen from figure 6. Such an extension to longer
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wavelengths was also observed for the chromium-substituted systems

Ti lxCrxO2 and BaTi lxCrxO3 (5,13,14). Unfortunately, further improvement

of the photoresponse at higher wavelengths for chromium-substituted

FeNbO4 could not be achieved because of the high resistivity of the

rutile phases.

Analysis of the spectral response data can yield values for the

various energy transitions (15). Accordingly, the quantity (fhVf
5

is plotted as a function of the photon energy in figure 7. This analysis

yields a lowest-energy optical band gap of 1.90(5) eV. As previously

reported, FeNbO4 shows a lowest-energy transition of 2.08 eV. Conse-

quently, there appears to be a significant lowering of the band gap on

substitution of small amounts of chromium into FeNbO4 . This is in good

agreement with the reported decrease in the optical band gap of a-Fe 203

for a 10 mole percent substitution of chromium (16). In addition, from

the data presented in figure 7, several additional band transitions at

higher energies can be estimated. These are indicated by sudden increases

in the slope, such as occur at 2.7(1), 3.27(3) and 4.41(2)eV. The latter

three energy gaps agree quite closely with the values of 2.68(2), 3.24(4),

and 4.38(2) eV reported for pure FeNbO4. Such an agreement suggests

that the individual characteristics of FeO 6 and NbO 6 centers of FeNbO4

are not altered. The lowering of the optical band gap can, therefore, be

attributed to the formation of Cr3 + (3d3 ) energy levels within the optical band

gap of FeNbO 4 . However, as suggested by Goodenough (14) and Campet (5),

some surface delocalization of Cr 3+(3d 3) states are probably required to

make the observed contributions to photoactivity possible.
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TABLE I

Precision Lattice Constants for the System Fe I Cr xNb0

0 a 0

FeNbO 4  4.997(2) 5.619(2) 4.651(2) 90

Fe Cr NbC 4.996(2) 5.611(2) 4.642(2) 89.79
.9 .1 4

Fe 6Cr 4NbO4  4.670(2) -3.030(2) -

CrNbO 4  4.645(2) -3.012(2)

TABLE II

Magnetic and Electrical Data on the System Fe 1xCr xNbC

(a)
Structure C NI xp' C M theo. e p (ohms)

FeNbO 4  w 4.18 4.35 -79.8 40(l)

Fe Cr NbC W 3.S0 3.94(b) -52.6 53(1).9 .1 4

CrNhO 4  R 1.871 1.87 -33.9 insul.

(a) W = Wolframitc, R = rutile

(b) Corrected for CI(Fe ) + 4. 18
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FIGURE CAPTIONS

Figure 1. The structure of rutile, MO2 : (a) packing of

MO6 octahedra; (b) closest-packed arrangement of

oxygen around M atoms.

Figure 2. The structure of c-PbO 2 : (a) packing of MO6 octahedra;

(b) closest-packed arrangement of oxygen around

M atoms.

Figure 3. Structure of Wolframite FeNbO4 : (a) packing of MO6

octahedra; (b) closest-packed layer of oxygen around

Fe and Nb Atoms.

Figure 4. Variation of photocurrent with anode potential

under "white" xenon arc irradiation of 1.0 w/cm2 in

0.2 M sodium acetate adjusted to pfi= 7 .8

Figure 5. Spectral variation of the quantum efficiency obtained

at an anode potential of 0.8 volts vs SCE in 0.2 M

sodium acetate adjusted to pH=7.8

Figure 6. Solar response for air mass 1 (AM1) calculated from

the data presented in figure 5.

Figure 7. Indirect band-gap analysis for Fe .9Cr .1NbO 4 ,

showing transitions at 1.90(5), 2.7(1), 3.27(3) and

4.41(2) eV.
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